Wifi Standards

From CTWUG Wiki
Jump to: navigation, search

General Description

The 802.11 family includes over-the-air modulation techniques that use the same basic protocol. The most popular are those defined by the 802.11b and 802.11g protocols, and are amendments to the original standard. 802.11-1997 was the first wireless networking standard, but 802.11b was the first widely accepted one, followed by 802.11g and 802.11n. Security was originally purposefully weak due to export requirements of some governments, and was later enhanced via the 802.11i amendment after governmental and legislative changes. 802.11n is a new multi-streaming modulation technique that is still under draft development, but products based on its proprietary pre-draft versions are being sold. Other standards in the family (c–f, h, j) are service amendments and extensions or corrections to previous specifications.

802.11b and 802.11g use the 2.4 GHz ISM band. Because of this choice of frequency band, 802.11b and g equipment may occasionally suffer interference from microwave ovens, cordless telephones and Bluetooth devices. Both 802.11 and Bluetooth control their interference and susceptibility to interference by using spread spectrum modulation. Bluetooth uses a frequency hopping spread spectrum signaling method (FHSS) while 802.11b/g use the direct sequence spread spectrum signaling (DSSS) and orthogonal frequency division multiplexing (OFDM) methods respectively. 802.11a uses the 5 GHz U-NII band, which, for much of the world, offers at least nineteen non-overlapping channels rather than the three offered in the 2.4 GHz ISM frequency band. However propagation around objects such as walls and furniture tends to be better at higher frequencies[citation needed]. This is because higher frequencies scatter more which helps them get around objects[citation needed]. However penetration is better with lower frequencies. You may get better or worse performance with higher or lower frequencies (channels) depending on your environment. WiFi generally reflects around objects rather than going through them.

The other major factor in performance is absorption by water and moisture. 2.4GHz is very close to the O-H bond frequency. Water is full of O-H bonds so it tends to really absorb 2.4GHz WiFi signals. Higher and lower frequencies have less of a problem with this.

The segment of the radio frequency spectrum used varies between countries. In the US, 802.11a and 802.11g devices may be operated without a license, as allowed in Part 15 of the FCC Rules and Regulations. Frequencies used by channels one through six (802.11b) fall within the 2.4 GHz amateur radio band. Licensed amateur radio operators may operate 802.11b/g devices under Part 97 of the FCC Rules and Regulations, allowing increased power output but not commercial content or encryption.

Protocols

802.11a

The 802.11a standard uses the same data link layer protocol and frame format as the original standard, but an OFDM based air interface (physical layer). It operates in the 5 GHz band with a maximum net data rate of 54 Mbit/s, plus error correction code, which yields realistic net achievable throughput in the mid-20 Mbit/s[citation needed].

Since the 2.4 GHz band is heavily used to the point of being crowded, using the relatively un-used 5 GHz band gives 802.11a a significant advantage. However, this high carrier frequency also brings a disadvantage: The effective overall range of 802.11a is less than that of 802.11b/g; and in theory 802.11a signals cannot penetrate as far as those for 802.11b because they are absorbed more readily by walls and other solid objects in their path due to their smaller wavelength. In practice 802.11b typically has a higher distance range at low speeds (802.11b will reduce speed to 5 Mbit/s or even 1 Mbit/s at low signal strengths). However, at higher speeds, 802.11a typically has the same or higher range due to less interference.

(Used currently on all CTWUG backbones and most major highsites)

802.11b

802.11b has a maximum raw data rate of 11 Mbit/s and uses the same media access method defined in the original standard. 802.11b products appeared on the market in early 2000, since 802.11b is a direct extension of the modulation technique defined in the original standard. The dramatic increase in throughput of 802.11b (compared to the original standard) along with simultaneous substantial price reductions led to the rapid acceptance of 802.11b as the definitive wireless LAN technology.

802.11b devices suffer interference from other products operating in the 2.4 GHz band. Devices operating in the 2.4 GHz range include: microwave ovens, Bluetooth devices, baby monitors and cordless telephones.

(No more being used on any CTWUG owned highsites)


802.11g

In June 2003, a third modulation standard was ratified: 802.11g. This works in the 2.4 GHz band (like 802.11b), but uses the same OFDM based transmission scheme as 802.11a. It operates at a maximum physical layer bit rate of 54 Mbit/s exclusive of forward error correction codes, or about 19 Mbit/s average throughput[citation needed]. 802.11g hardware is fully backwards compatible with 802.11b hardware and therefore is encumbered with legacy issues that reduce throughput when compared to 802.11a by ~21%.

The then-proposed 802.11g standard was rapidly adopted by consumers starting in January 2003, well before ratification, due to the desire for higher data rates, and reductions in manufacturing costs. By summer 2003, most dual-band 802.11a/b products became dual-band/tri-mode, supporting a and b/g in a single mobile adapter card or access point. Details of making b and g work well together occupied much of the lingering technical process; in an 802.11g network, however, activity by a 802.11b participant will reduce the data rate of the overall 802.11g network.

Like 802.11b, 802.11g devices suffer interference from other products operating in the 2.4 GHz band.

(Used currently on some CTWUG highsites and private nodes)


802.11n

802.11n is a proposed amendment which improves upon the previous 802.11 standards by adding multiple-input multiple-output (MIMO) and many other newer features. The TGn workgroup is not expected to finalize the amendment until December 2009.[6] Enterprises, however, have already begun migrating to 802.11n networks based on Draft 2 of the 802.11n proposal. A common strategy for many businesses is to set up 802.11b and 802.11g client devices while gradually moving to 802.11n clients as part of new equipment purchases

(This protocol is not used on any CTWUG highsites or private nodes)


Copied from http://en.wikipedia.org/wiki/802.11